Pemanfaatan Material Lokal

by Dedy Asmaroni

Submission date: 20-Dec-2022 12:21PM (UTC+0530) Submission ID: 1984912984 File name: 1243-Article_Text-4280-1-10-20190331.pdf (802.61K) Word count: 3801 Character count: 20028 32

Ge-STR AM: Jurnal Perencanaan dan Rekayasa Sipil Volume 02, Nomor 01, Maret 2019 ISSN 2615-7195 (E)

Pemanfaatan Material Lokal Dan Produk Samping Industri Sebagai Agregat Batu Pecah Dan *Filler* terhadap Kinerja *Marshall* pada Campuran Panas Aspal Beton Lapis Permukaan Aus (ACWC)

Taurina Jemmy Irwanto¹⁾, Dedy Asmaroni²⁾ ¹⁾ Teknik Sipil, Universitas Madura JI. Raya Panglegur KM. 3,5 Pamekasan 69371 ²⁾ Teknik Sipil, Universitas Madura JI. Raya Panglegur KM. 3,5 Pamekasan 69371 Email: dedyasmaroni@unira.ac.id

Abstract

The use of ACWC asphalt as a surface layer in Madura continues to increase as traffic growth increases following the opening of the Suramadu Bridge. In addition to having the advantages of stability in accepting loads compared to other types of surface layers, ACWC asphalt is also easily made and carried out in the field. However, asphalt mixing plant (AMP) companies in Madura still use materials from outside Madura as coarse aggregates such as river breaking stones and fly ash and cement used as fillers to improve stability. Based on this, this research was carried out by utilizing local meter which has the same properties in the form of local Madura crushed stone which will be used as coarse aggregate and industrial by-products in the form of rice husk ash (by-product of brick industry) and linestone powder (limestone mining byproducts) used as filler. For this purpose samples were made with the percentage of filler used was 2%, 4%, 6%, 8% and 10%. Marshall test testing includes calculation of density, flow, VMA, VIM, VFB, and stability. From the test results, AC-WC uses local materials with both types of filler, namely Limestone and Rice Husk Ash. There is one type of mixture that meets the Marshall characteristics, namely the use of local materials and filler of limestone 8% asphalt variation 6.5%. With a value of 2,285 Density, 1,852,863 kg Stability, Flow 3,467 mm, Marshall Quotient 534,48 kg / mm, VIM 3,058%, V.M.A 15,941%, VFB 80,819%. While the local material and fillers of Rice Husk Ash from the results for Cement.

Keywords: Hot asphalt ACWC; local material; rice husk ash; limestone powder; marshall test.

Abstrak

Penggunaan aspal ACWC sebagai lapisan permukaan aus di Madura terus meningkat seiring meningkatnya pertumbuhan lalulintas pasca dibukanya Jembatan Suramadu. Selain mempunyai Kelebihan stabilitasnya dalam menerima beban dibandingkan jenis lapis permukaan lainnya, aspal ACWC juga mudah dibuat dan dilaksanakan di lapangan. Hanya saja, penusahaan *asphalt mixing plant* (AMP) yang ada di Madura masih menggunakan material dari luar Madura sebagai agregat kasar seperti batu pecah sungai maupuan abu terbang dan semen yang digunakan sebagai *filler* untuk meningkatkan stabilitasnya. Berdasarkan hal tersebut penelitian ini dilakukan dengan memanfaatkan meterial lokal yang mempunyai sifat sama berupa batu pecah lokal Madura yang akan digunakan sebagai agregat kasar serta produk samping industri berupa abu sekam padi (produk samping industri batu bata) dan serbuk batu kapur (produk samping penambangan batu kapur) yang digunakan sebagai *filler*. Untuk tujuan tersebut maka dibuatlah sampel dengan prosentase *filler* yang digunakan adalah 2%, 4%, 6%, 8% dan 10%. Pengujian Marshall test yang dilakukan meliputi Perhitungan *Density*, How, VMA, VIM, VFB, dan stabilitasnya. Dari hasil pengujian AC-WC menggunakan material lokal dengan kedua jenis filler yaitu Batu Kapur dan Abu Sekam Padi Terdapat 1 jenis campuran yang memenuhi persyaratan karakteristik *Marshall* yaitu penggunaan*material lokal* dan*filler Batu Kapur* 8 % variasi aspal 6,5 %. Dengan nilai Density 2.285, *Stabilitas* 1.852,863 kg, *Flow* 3.467 mm, *Marshall Quotient* 534.48 kg/mm, *VIM* 3.058 %, *V.M.A* 15,941 %, *VFB* tidak memenuhi syarat sehingga penggunaan filler abu sekam padi tidak bisa digunakan sebagai pengganti semen.

Kata Kunci: Aspal panas ACWC; material lokal; abu sekam padi; serbuk batu kapur; marshall test.

PENDAHULUAN

Pertumbuhan ekonomi Pulau Madura pada akhir akhir ini terus meningkat sebagai dampak adanya Jembatan Suramadu yang mampu memangkas waktu perjalanan dari Surabaya sebagai pusat kegiatan ekonomi ke beberapa kota di Madura. Pertumbuhan ekonomi ini juga bersamaan dengan peningkatan kualitas struktur jalan karena semakin besarnya volume kendaraan yang masuk ke Pulau Madura. Volume kendaraan yang masuk Pulau Madura sejak dibukanya Jembatan Suramadu meningkat sangat besar dari sebelumnya berjumlah 1935 per hari (Effendi, M. dan Hendarto, RM., 2014) menjadi sekitar 15000 kendaraan per hari (http://kelanakota.suarasurabaya.net/news/2016) akan berdampak besar pada stabilitas struktur jalan utama yang ada di Pulau Madura. Berdasarkan hal tersebut, beberapa tahun ini banyak kegiatan pemeliharaan dan peningkatan kelas jalan dengan menggunakan perkerasan lentur (*flexible pavement*) dengan menggunakan lapis permukaan aus aspal beton AC-WC.

Pada saat ini perusahaan AMP yang ada di Madura masih menggunakan material (*aspalt hot mix*) berasal dari luar Pamekasan sehingga mengakibatkan biaya produksi yang besar dan berpengaruh terhadap kapasitas beban pekerja jalan yang ada di Madura. Oleh karena itu perlu adanya efisiensi dan inovasi penyusun material campuran aspal panas mengingat di Madura juga mepunyai batu Ge-STRAM: Jurnal Perencanaan dan Rekayasa Sipil Volume 02, Nomor 01, Maret 2019

pecah dengan kualitas yang memenui SNI (Fauzi, A, 2012). Hal ini dibuktikan dari penelitian yang dilakukan oleh Yulianto, FE dan Mukti, HM. (2015) serta Handojo, J dan Sugiharto, H (2001) yang menyatakan bahwa batuan pecah Madura dapat digunakan sebagai agregat untuk beton struktur menggatikan batu pecah jawa dengan hasil kuat tekan yang baik.

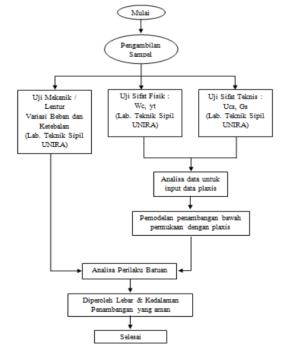
Usaha lainnya yang dliakukan untuk meningkatkan mutu aspal AC-WC adalah menambahkan material aditif sebagai filler untuk mengurangi pori pori pada aspal AC-WC. Beberapa material aditif yang digunakan ebagai filler antara lain: abu bata, abu vulkanik, semen, kapur dan abu terbang, Fanisa, H dan Wahyudi, M (2010) menyatakan bahwa penambahan kapur padam sebesar 5,07% mampu meningkatkan performa aspal AC-WC (kinerja marshall nya). Sedangkan Ali, H (2011) menggunakan abu batu dan abu vulkanik sebagai filler untuk meningkatkan kualitas aspal pada uji Marshall. Penelitian lainnya dilakukan oleh Thoriq, Q (2016) yang memanfaatkan limbah pemotongan batu kapur (serbuk batu kapur) sebagai filler dengan hasil peningkatan kualitas aspal AC-WC pada penambahan 4% serbuk batu kapur. Hanya saja, pada penelitian yang dilakukan tersebut masih menggunakan batu pecah jawa (batu kali) yang menyebabkan biaya produksinya masih cukup tingi.

Berdasarkan penjelasan tersebut penting dilakukan penelitian untuk memanfaatkan batuan lokal Madura sebagai material aspal AC-WC dan produk samping industri (abu sekam padi dan serbuk kapur) sebagai *filler* aspal AC-WC. Diharapkan dengan memanfaatkan material lokal yang ada biaya produksi aspal AC-WC menurun dan memberikan nilai ekonomis pada bahan aditif yang berasal dari produk samping industri yang sebelumnya hanya dibuang saja. Selain itu, penggunaan produk samping sebagai bahan aditif pada aspal AC-WC tidak hanya berdampak ekonomi namun juga lebih ramah lingkungan karena pemanfaatan produk samping yang semula menjadi limbah pabrik.

METODE PENELITIAN

Penelitian ini merupakan penelitian laboratorium untuk merencanakan campuran aspal panas dengan bahan material lokal (batu pecah Madura) dan bahan pengisi (*Filler*) yang berasal dari produk samping Industri (abu sekam padi dan serbuk kapur). Pengujian stabilitas aspal panas dilakukann dengan metode Marshall Test sesuai SNI 06-2489-1991 sedangkan pengujian material merujuk pada Spesifikasi Umum Bina Marga 2010 (Revisi 3) Divisi 6 Perkerasan Aspal. Penelitian ini direncanakan selesai dalam waktu 7 bulan. Tahapan penelitian yang akan dilaksanakan dijelaskan dalam Gambar 1.

HASIL PENELITIAN


Hasil Pengujian Material

Pengujian material merujuk pada Spesifikasi Umum Bina Marga 2010 (Revisi 3) Divisi 6 yaitu pengujian abrasi, gradasi dan berat jenis.

Hasil Pengujian Propertis Agregat Kasar

Pengujian Analisa saringan dilakukan pada agregat kasar yaitu pada agregat dengan ukuran 00-05 mm, ISSN 2615-7195 (E)

05-10 mm dan 10-15 sedangkan untuk material abrasi dan pipih lonjong ukuran 10-20 mm. Tabel 1 menunjukkan hasil pengujian propertis agregat kasar.

Gambar.1 Diagram alir penelitian batuan

Tabel 1.Hasil Pengujian Propertis Agregat Kasar

No	Jenis <mark>Pengujian</mark>	Hasil Pengujian	Spesifikasi	Keteranga
1	Abrasi 500 Putaran	27,34%	Mak 40%	Memenuhi
2	Gradasi (10 – 15 mm)	0%	14 Lolos Saringan 200 Mak 2%	Memenuhi
3	Gradasi (5 – 10 mm)	0%	Lolos Saringan 200 Mak 2%	Memenuhi
4	Gradasi (0 – 05 mm)	99,54%	Lolos Saringan 4 Min 80%	Memenuhi
5	Partikel Pipih dan lonjong	6,23%	Mak 10%	Memenuhi

Hasil Pengujian Berat Jenis Agregat Kasar

Tabel 2 menunjukkan hasil pengujian laboratorium untuk pengujian berat jenis agregat dilakukan pada agregat kasar dan agregat halus yaitu pada agregat dengan ukuran 00-05 mm, 05-10 mm dan 10-15.

2

Ge-STR AM: Jurnal Perencanaan dan Rekayasa Sipil Volume 02, Nomor 01, Maret 2019

Гab	abel 2.Hasil Pengujian Berat Jenis Agregat											
No	Jenis Pengujian	Ukuran Aggregat			Spesifikasi	Keterangan						
		10 – 15 mm	05-10 mm	00-05 mm								
1	Berat Jenis (oven dry)	2,56	2,56	2,573	Min. 2,5	Memenuhi						
2	Beras Jenis Kering Permukaan Jemu (saturated surface dry)	2,508	2,505	2,616	Min. 2,5	Memenuhi						
3	Berat jenis Semu (apparent specific gravity)	2,591	2,590	2,690	Min. 2,5	Memenuhi						
4	Penyerapan (absorsî)	2,126	2,177	1,688	Mak 3	Memenuhi						

Hasil Pengujian Propertis Batu Kapur

Pengujian gradasi dan uji komposisi kimia dilakuka pada batu kapur yang akan digunakan sebagai filler seperti pada Tabel 3 yaitu hasil pengujian gradasi sedangkan Tabel 4 menunjukkan hasil pengujian kimia

Tabel 3. Hasil Pengujian Gradasi Batu Kaj	our
---	-----

No	Jenis Pengujian	Hasil Pengujian	Spesifikasi	Keterangan	
1	Gradasi	77,13%	Min 75%	Memenuhi	

Pengujian komposisi kimia dilakukan di Laboratorium untuk mengetahui komposisi kimia terbesar yang terdapat pada batu kabur. Berdasarkan Tabel 4 batu kapur Lesong Daja mempunyai komposisi terbesar berupa Kalsium Oksida (CaO) yaitu 99,39%.

Tabel 4. Komposisi Kimia Batu Kapur Lesong Daja

No	Jenis Pengujian	Hasil Pengujian	Metode Pengujian	Keterangan
1	CaO	99,39%	Spektrootometer	Kalsium Oksida
2	Fe ₂ O ₃	0,38%	Spektrootometer	Besi
3	CuO	0,12%	Spektrootometer	Oksida
4	SrO	0,11%	Spektrootometer	

Hasil Pengujian Propertis Abu Sekam Padi

Pegujian gradasi dan uji komposisi kimia juga dilakukan pada abu sekam padi seperti yang terdapat pada Tabel 5 dan Tabel 6.

Tabel 8.Hasil Pengujian Sampel Untuk Benda Uji Filler Serbuk Batu Putih

Filler	Kadar Aspal	Density	Stabilitas Kg	(Flow) (mm)	(MQ) (Kg/mm)	(VIM) (%)	V.M.A (%)	(VFB) (%)
2%	5,00	2,180	1343,225	3,367	398,978	9,232	18,239	49,383
2%	5,50	2,198	1317,251	3,067	429,538	7,859	18,013	56,373

Tabel 5. Hasil Pengujian Gradasi Abu Sekam Padi

No	Jenis Pengujian	Hasil Pengujian	Spesifikasi	Keterangan
1	Gradasi	76,920%	Min 75%	Memenuhi

Berdasarkan Tabel 6 abu sekam padi mempunyai komposisi terbesar berupa Silika Dioksida (SiO2) yaitu 47,60%. Hasil pengujian merupakan hasil pengujian laboratorium kimia.

Tabel 6. Komposisi Kimia Batu Kapur Lesong Daja

No	Jenis Pengujian	Hasil Pengujian	Metode Pengujian	Keterangan
1	SiO ₂	77,00%	Spektrootometer	Silika Dioksida
2	CaO	9,94%	Spektrootometer	Kalsium Oksida
3	Fe ₂ O ₃	5,69%	Spektrootometer	Besi
4	P ₂ O ₅	2,40%	Spektrootometer	Fosfat
5	K ₂ O	2,61%	Spektrootometer	Kalium Oksida

Hasil Pengujian Propertis Aspal Pen. 60/70 Ex. Pertamina

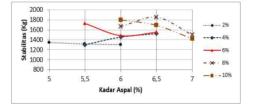
Setelah dilakukan pengujian aspal di laboratorium, aspal pen. 60/70 dapat digunakan karena memenuhi spesifikasi yang ditetentukan berdasarkan hasil pengujian pada Tabel 7.

Tabel 7.Hasil Pengujian Propertis Aspal Pen. 60/70 Pertamina

Jenis Pengujian	Metode	Hasil	Persyaratan
Jenis rengujian	Pengujian	Uji Lab.	Pen 60/70
Penetrasi pada 25°C (0,1 mm)	SNI 06-2456-2011	65,17	60-70
Titik Lembek (°C)	SNI 06-2434-1991	49,25	> 48
Titik Nyala (°C)	SNI 06-2433-2011	323,5	> 232
Daktilitas pada 25°C (cm)	SNI 06-2432-2011	> 110	> 100
Berat Jenis	SNI 06-2441-2011	1,0332	Min. 1,0
Kelarutan Aspal Dalam Trichloroethylene (%)	SNI 06-2438-2011	99,329	> 99
Kehilangan Berat	SNI 06-2440-2011	0,044	< 0,8
Penetrasi Setelah TFOT	SNI 06-2456-2011	93,61	> 54
Diktalitas Setelah TFOT	SNI 06-2432-2011	> 110	> 100

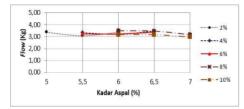
Analisa Hasil <mark>Pengujian</mark> Benda Uji

Hasil Pengujian Sampel Untuk Benda Uji Filler Serbuk **Batu Putih**


ISSN 2615-7195 (E)

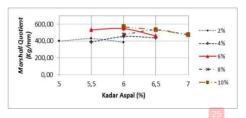
ISSN 2615-7195 (E)

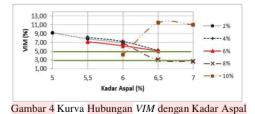
Ge-STRAM: Jurnal Perencanaan dan Rekayasa Sipil Volume 02, Nomor 01, Maret 2019


Filler	Kadar Aspal	Density	Stabilitas	(Flow)	(MQ)	(VIM)	V.M.A	(VFB)
	Aspai		Kg	(mm)	(Kg/mm)	(%)	(%)	(%)
	6,00	2,204	1301,023	3,367	386,443	6,978	18,237	61,736
	SPESII	FIKASI	> 800	2 -4	> 250	3 - 5	>15	> 65
	5,50	2,192	1302,068	3,333	390,620	8,170	18,326	55,418
4%	6,00	2,199	1455,472	3,200	454,835	7,248	18,511	60,843
4%	6,50	2,232	1522,864	3,467	439,288	5,201	17,725	70,657
	SPESII	FIKASI	> 800	2 -4	> 250	3 - 5	> 15	> 65
	5,50	2,217	1727,345	3,233	534,230	7,193	17,493	58,882
601	6,00	2,223	1483,012	3,233	458,663	6,273	17,691	64,542
6%	6,50	2,236	1552,144	3,367	461,033	5,089	17,665	71,192
	SPESII	SPESIFIKASI		2 -4	> 250	3 - 5	> 15	> 65
	6,00	2,209	1668,530	3,500	476,723	6,942	18,315	62,095
0.01	6,50	2,285	1852,863	3,467	534,480	3,058	15,941	80,819
8%	7,00	2,278	1497,193	3,167	472,798	2,711	16,665	83,735
	SPESII	FIKASI	> 800	2 -4	> 250	3 - 5	> 15	> 65
	6,00	2,273	1800,523	3,167	568,586	4,217	15,960	73,577
10%	6,50	2,086	1691,539	3,167	534,170	11,472	23,271	50,701
10%	7,00	2,082	1420,319	2,967	478,759	11,059	23,850	53,629
	SPESII	FIKASI	> 800	2 -4	> 250	3 - 5	> 15	> 65

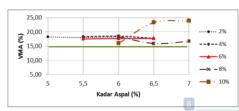
Berdasarkan data Tabel 8 hasil pengujian stabilitas, flow, Marshall Quotient, VIM, VMA, & VFB yang memenuhi spesifikasi ketentuan campuran aspal beton adalah campuran aspal panas dengan penambahan filler 8 % dengan variasi aspal 6,5 %. Sedangkan hubungan karakteristik marshall dengan kadar aspal terdapat pada Gambar 1 sampai dengan Gambar 6 berikut.

Gambar 1 Kurva Hubungan Stabilitas dengan Kadar Aspal

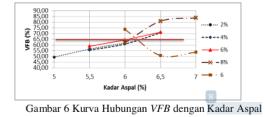

Berdasarkan Gambar 1 nilai *stabilitas* tertinggi AC-WC dengan penambahan *filler* 8 % dengan variasi aspal 6,5 % yaitu 1.852,863 kg, sedangkan masing-masing penggunaan filler 2%, 4%, 6%, 8% dan 10% dapat memenuhi persyaratan minimal nilai *stabilitas* 800 kg.


Gambar 2 Kurva Hubungan Flow dengan Kadar Aspal

Nilai *Flow* tertinggi AC-WC dengan penambahan *filler* 8 % dengan variasi aspal 6 % yaitu 3,5 mm sedangkan masing-masing penggunaan *filler* 2%, 4%, 6%, 8% dan 10% rata-rata dapat memenuhi persyaratan minimal nilai *Flow2* -4 mm seperti yang terlihat pada Gambar 2.


Pada Gambar 3 nilai Marshall Quotient tertinggi AC-WC dengan penambahan filler 10 % dengan variasi aspal 6 % yaitu 568,586 Kg/mm sedangkan masingmasing penggunaan filler 2%, 4%, 6%, 8% dan 10% ratarata dapat memenuhi persyaratan minimal nilai Marshall Quotient> 250 kg/mm. Ge-STR AM: Jurnal Perencanaan dan Rekayasa Sipil Volume 02, Nomor 01, Maret 2019

Gambar 3 Kurva Hubungan Marshall Quotient dengan Kadar Aspal



Dari hasil di dapat nilai *VIM* tertinggi AC-WC dengan penambahan *filler* 8 % dengan variasi aspal 6 % yaitu 3,058 % sedangkan masing-masing penggunaan filler 2%, 4%, 6%, 8% dan 10% rata-rata tidak dapat memenuhi persyaratan minimal nilai *VIM* 3 – 5 % seperti yang terlihat pada Gambar 4.

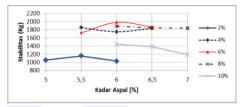
Gambar 5 Kurva Hubungan VMA dengan Kadar Aspal

Dari hasil pengujian *marshall* nilai *VMA* tertinggi AC-WC dengan penambahan *filler* 10 % dengan variasi aspal 7 % yaitu 23,850 % sedangkan masing-masing penggunaan filler 2%, 4%, 6%, 8% dan 10% memenuhi persyaratan nilai *VMA*>15 % seperti yang terlihat pada Gambar 5.

Dari hasil pengujian *marshall* nilai *VMA* tertinggi AC-WC dengan penambahan *filler* 8 % dengan variasi aspal 7 % yaitu 83,735 % sedangkan masing-masing penggunaan filler 2%, 4%, 6%, 8% dan 10% ada yang memenuhi dan ada yang tidak memenuhi persyaratan nilai VFB > 65 % seperti yang terlihat pada Gambar 6.

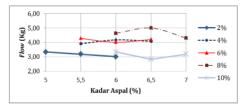
Cabel 9 Hasil Pengujian Sampel Untuk Benda Uji Filler Abu Sekam Padi									
Filler	Kadar aspal	Density	Stabilitas	(flow)	(MQ)	(VIM)	V.M.A	(VFB)	
			Kg	(mm)	(Kg/mm)	(%)	(%)	(%)	
	5,00	2,195	1052,861	3,333	315,858	7,984	16,606	51,918	
207	5,50	2,128	1157,277	3,167	365,456	10,159	19,562	48,067	
2%	6,00	2,299	1031,108	3,000	343,703	2,291	13,575	83,123	
	SPESIFIKASI		> 800	2 -4	> 250	3 - 5	> 15	> 65	
	5,50	2,172	1853,384	3,900	475,227	8,042	17,682	54,517	
4.67	6,00	2,193	1748,968	4,167	419,752	6,533	17,340	62,323	
4%	6,50	2,200	1835,981	4,067	451,471	5,583	17,504	68,107	
	SPESII	TKASI	> 800	2 -4	> 250	3 - 5	> 15	> 65	
6%	5,50	2,118	1722,864	4,267	403,796	10,154	19,595	48,179	

Hasil Pengujian Sampel Untuk Benda Uji Filler Abu Sekam Padi

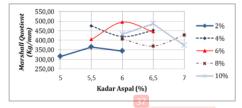

ISSN 2615-7195 (E)

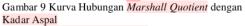
ISSN 2615-7195 (E)

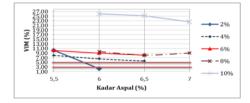
Ge-STRAM: Jurnal Perencanaan dan Rekayasa Sipil Volume 02, Nomor 01, Maret 2019


Filler	Kadar aspal	Density	Stabilitas	(flow)	(MQ)	(VIM)	V.M.A	(VFB)
			Kg	(mm)	(Kg/mm)	(%)	(%)	(%)
	6,00	2,130	1979,553	4,000	494,888	9,001	19,542	53,940
	6,50	2,136	1866,436	4,200	444,390	8,117	19,736	58,872
	SPESII	FIKASI	> 800	2 -4	> 250	3 - 5	> 15	> 65
	6,00	2,109	1883,839	4,633	406,584	9,691	20,172	51,960
0.07	6,50	2,130	1849,033	5,000	369,807	8,171	19,801	58,736
8%	7,00	2,096	1840,332	4,300	427,984	9,052	21,521	57,939
	SPESH	FIKASI	> 800	2 -4	> 250	3 - 5	> 15	> 65
	6,00	1,720	1440,071	3,333	432,021	26,047	34,612	24,745
10%	6,50	1,728	1379,161	2,833	486,763	25,215	34,665	27,261
	7,00	1,778	1183,381	3,167	373,699	22,543	33,137	31,970
	SPESII	FIKASI	> 800	2 -4	> 250	3 - 5	> 15	> 65

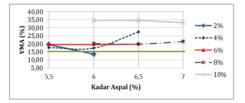
Berdasarkan data Tabel 9 hasil pengujian stabilitas, flow, Marshall Questiont, VIM, VMA, & VFB tidak ada yang memenuhi spesifikasi teknik Tabel 2.5. Ketentuan Campuran Aspal Beton.Sedangkan hubungan karakteristik marshall dengan kadar aspal terdapat pada Gambar 7 sampai dengan Gambar 12 berikut.


Gambar 7 Kurva Hubungan Stabilitas dengan Kadar Aspal

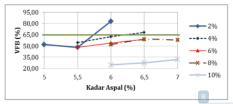

Nilai stabilitas tertinggi AC-WC dengan penambahan filler 6 % dengan variasi aspal 6 % yaitu 1979,553 kg, sedangkan masing-masing penggunaan filler 2%, 4%, 6%, 8% dan 10% dapat memenuhi persyaratan minimal nilai stabilitas 800 kg seperti yang terlihat pada Gambar 7.


Gambar 8 Kurva Hubungan Flow dengan Kadar Aspal

Berdasarkan Gambar 8 nilai *Flow* tertinggi AC-WC dengan penambahan *filler*6 % dengan variasi aspal 6 % yaitu 4 mm sedangkan masing-masing penggunaan filler 2% dan 10% rata-rata dapat memenuhi persyaratan minimal nilai *Flow>* 3 mm, sedangkan penggunaan *filler* 4%, 6%, 8% rata – rata tidak memenuhi seperti persyaratan nilai *Flow2* -4 mm.


Nilai Marshall Quotient tertinggi AC-WC dengan penambahan filler 6 % dengan variasi aspal 6 % yaitu 494,888 Kg/mm sedangkan masing-masing penggunaan filler 2%, 4%, 6%, 8% dan 10% rata-rata dapat memenuhi persyaratan minimal nilai Marshall Quotient> 250 kg/mm seperti yang terlihat pada Gambar 9.

Gambar 10 Kurva Hubungan VIM dengan Kadar Aspal


Ge-STRAM: Jurnal Perencanaan dan Rekayasa Sipil Volume 02, Nomor 01, Maret 2019

Dari hasil pengujian *marshall* didapat nilai VIM pada masing-masing penggunaan filler 2%, 4%, 6%, 8% dan 10% tidak dapat memenuhi persyaratan minimal nilai VIM 3-5 % seperti yang terlihat pada Gambar 10.

Gambar 11 Kurva Hubungan VMA dengan Kadar Aspal

Berdasarkan Gambar 11 nilai VMA tertinggi AC-WC dengan penambahan *filler* 10 % dengan variasi aspal 6,5 % yaitu 34,665 % sedangkan masing-masing penggunaan filler 2%, 4%, 6%, 8% dan 10% memenuhi persyaratan nilai VMA>15 % hanya satu jenis varian yang kuran dari 15% penambahan *filler* 2 % dengan variasi aspal 6 % dengan nilai 13,575 %.

Gambar 12 Kurva Hubungan VFB dengan Kadar Aspal

Dari hasil pengujian *marshall* didapat nilai *VMA* AC-WC yang masuk hanya dua varian saja dengan penambahan *filler* 2 % dengan variasi aspal 6 % yaitu 83,123 % dan penambahan *filler* 4 % dengan variasi aspal 6,5 % yaitu 68,107 %. Sedangkan masing-masing penggunaan filler 2%, 4%, 6%, 8% dan 10% tidak ada yang memenuhi persyaratan nilai *VFB* > 65 % seperti yang terlihat pada Gambar 11.

KESIMPULAN

Dari hasil pengujian di Laboratorium dan pembahasan maka dapat disimpulkan sebagai berikut:

- Hasil pengujian sifat fisik atau pengujian propertis agregat kasar sudah memenuhi Spesifikasi Umum Bina Marga Tahun 2010 (Revisi 3) sehingga batu pecah madura asal desa rek-kerrek bisa digunakan untuk pembuatan aspal *hotmix* sebagai agregat.
- Hasil pengujian gradasi *filler* Batu Kapur Putih dan Abu Sekam padi lolos saringan no. 200 > 75% sudah memenuhi Spesifikasi Umum Bina Marga Tahun 2010 (Revisi 3) sehingga kedua jenis produk samping industri tersebut bisa digunakan untuk pembuatan aspal hotmix sebagai filler.
- 3) Pengujian propertis kimia dari Batu kapur Lesong Daja mempunyai komposisi terbesar berupa Kalsium Oksida (CaO) yaitu 99,39%. Dan Abu sekam padi mempunyai komposisi terbesar berupa Silika Dioksida (SiO₂) yaitu 47,60%.

4) Dari hasil pengujian AC-WC menggunakan material lokal dengan kedua jenis *filler* yaitu Batu Kapur dan Abu Sekam Padi Terdapat 1 jenis campuran yang memenuhi persyaratan Spesifikasi Umum Bina Marga 2010 Revisi 3 terhadap karakteristik Marshall yaitu penggunaanmaterial lokal danfiller Batu Kapur 8 % variasi aspal 6,5 %. Dengan nilai Density 2.285, Stabilitas 1.852,863 kg, Flow 3.467 mm, Marshall Quotient 534,48 kg/mm, VIM 3,058 %, V.M.A 15,941 %, VFB 80,819 %. Sedangkan material lokal danfiller Abu Sekam Padi dari hasil pengujian Marshall Test untuk Flow, VIM, dan VFB tidak memenuhi syarat Spesifikasi Umum Bina Marga Tahun 2010 Revisi 3 sehingga abu sekam padi tidak bisa digunakan sebagai penganti semen.

DAFTAR PUSTAKA

- Andri,Setiawan Arif,Pradani Novita (2012), "Pengaruh penggunaan kapur sebagai bahan pengisi (filler) terhadap karakteristik beton aspal lapis aus (AC-WC)", Jurnal Rekayasa dan Manajemen Transportasi Vol II,
- Achmad Fadli, (2010) "Tinjauan sifat sifat agregat untuk campuran aspal panas (Studi kasus beberapa quary di Gorontalo", Jurnal Saintek, Vol 5,
- Asphalt Institute. 2001. Construction of Hot Mix Asphalt

Pavement. Manual Series 22.2nd. USA.

- Anonim.,1991, "*Metode Pengujian Campuran Laston* dengan Alat Marshall", Yayasan Badan penerbit Pekerjaaan Umum, Jakarta.
- Asphalt Institute. 1993. The Asphalt Handbook, Manual Series No.2 (MS-2), The Asphalt Institute.
- Ali, H (2010). "Karakteristik campuran asphalt concretewearing course (AC-WC) dengan penggunaan abu vulkanik dan abu bata sebagai filler" Jurnal Rekayasa Vol. 15 No. 1, April 2011.
- Departemen Permukiman dan Prasarana Wilayah Dirjen Prasarana Wilayah, 2002, "Manual perkerasan campuran beraspal panas Buku 1: Petunjuk umum
- Departemen Pekerjaan Umum Direktorat Jenderal Bina Marga,2010, "Spesifikasi umum" Kementrian Pekerjaan Umum, Jakarta
- Fanisa, H dan Wahyudi, M (2010)." Perencanaan campuran aspal beton dengan menggunakan filler kapur padam". Program Studi Diploma III Teknik Sipil Fakultas Teknik Universitas Diponegoro, Semarang.
- Fauzi, A (2013). "Pengaruh penggunaan batu pecah madura dan batu pecah jawa terhadap kuat tekan beton" Jurusan Teknik Sipil Fakultas Teknik Universitas Madura, Pamekasan.
- http://kelanakota.suarasurabaya.net/news/2016/168000-Mulai-2-Maret-Tarif-Tol-Suramadu-Turun-50-Persen. (06 Juni 2017).

7

ISSN 2615-7195 (E)

Ge-STRAM: Jurnal Perencanaan dan Rekayasa Sipil Volume 02, Nomor 01, Maret 2019

Korompis Steward Paulus, Kaseke Oscar H, Diantje Sompie

(2015), "Kajian Laboratorium Penggunaan Material Agrgegat yang Bersumber dari Kaki Gunung Soputan untuk Campuran Beraspal Panas", Jurnal Sipil Statik Vol 3, Manado

Kementrian Pekerjaan Umum. 2010. "Spesifikasi Umum Bina Marga Revisi3".Yayasan Penerbit Pekerjaan Umum, Jakarta.

- Qodar, T (2016). "Pengaruh penggunaan serbuk batu kapur putih madura sebagai filler pada campuran aspal panas (hotmix) asphalt concrete wearing course (acwc) terhadap karakteristik marshall". Jurusan Teknik Sipil Fakultas Teknik Universitas
 Madura, Pamekasan.
- Sukirman, Silvia (1999), Perkerasan Lentur Jalan Raya, Nova, Bandung,
- Sukirman, Silvia (2003), Beton Aspal Campuran Panas, Granit, Jakarta
- Sugiyono (2006)."Statistika Untuk Penelitian Pendidikan Pendekatan Kuantitatif, Kualitatif dan R&D". Bandung: Alfabeta.
- Yulianto, FE dan Mukti, MH (2015). "Penggunaan abu sekam padi sebagai bahan aditif pada beton campuran 1Pc:2Ps:3Kr untuk meningkatkan kuat tekannya". Universitas Madura, Pamekasan.

ORIG	INALITY	REPORT
0140		

18% 17% 4% SIMILARITY INDEX 17% PUBLICATI	3% IONS STUDENT PAPERS
PRIMARY SOURCES	
1 www.kinglong.pl Internet Source	2%
2 volontegenerale.nl Internet Source	1%
3 ferienwohnung-kimbach.de Internet Source	1%
4 12califoto.pl Internet Source	1 %
5 projets-tt.com Internet Source	1 %
6 prame.be Internet Source	1 %
7 jurnal.untad.ac.id	1 %
8 ejournal.unsrat.ac.id	1 %
9 media.neliti.com Internet Source	1%

10	repositori.uin-alauddin.ac.id	1 %
11	www.slideshare.net	1 %
12	eprints.uny.ac.id	1%
13	Submitted to Binus University International Student Paper	<1%
14	caricci-shoes.be	<1%
15	spektrum.unram.ac.id	<1%
16	sttgarut.ac.id	<1%
17	journal.uny.ac.id	<1 %
18	Submitted to Universitas Teuku Umar	<1 %
19	S V Ariyanto, M D Zuhri, R Kasanova, I Darmawan, N H Hari. "Investigation of landslide zones with geoelectric methods for disaster mitigation in Pamekasan", IOP Conference Series: Earth and Environmental Science, 2019 Publication	<1 %

20 ejournal.unira.ac.id	<1 %
21 Submitted to Universitas Merdeka Malang Student Paper	<1 %
22 repository.unmuhjember.ac.id	<1 %
23 jurnal.untidar.ac.id	<1 %
24 Ippm.univrab.ac.id	<1 %
25 core.ac.uk Internet Source	<1 %
26 docobook.com Internet Source	<1 %
27 ejournal.um-sorong.ac.id	<1 %
28 journal.umpr.ac.id Internet Source	<1 %
29 www.coursehero.com	<1 %
30 aceh.tribunnews.com Internet Source	<1 %
31 download.garuda.ristekdikti.go.id	<1 %

32	ejournal.unitomo.ac.id	<1 %
33	eprints.uns.ac.id	<1 %
34	he02.tci-thaijo.org	<1%
35	journal.unpar.ac.id	<1%
36	repository.uinjkt.ac.id	<1%
37	dspace.uii.ac.id	<1%
38	April Gunarto. "PENELITIAN CAMPURAN ASPAL BETON DENGAN MENGGUNAKAN FILLER BUNGA PINUS", UKaRsT, 2019 Publication	<1%

Exclude quotes	Off	Exclude matches	Off
Exclude bibliography	Off		

GRADEMARK REPORT	
FINAL GRADE	GENERAL COMMENTS
/0	Instructor
PAGE 1	
PAGE 2	
PAGE 3	
PAGE 4	
PAGE 5	
PAGE 6	
PAGE 7	
PAGE 8	

THESIS

0 / 1

Thesis • The thesis may be more than one sentence, provided the sentences are in close proximity. • The thesis may be anywhere within the response. • For a thesis to be defensible, the sources must include at least minimal evidence that could be used to support that thesis; however, the student need not cite that evidence to earn the thesis point. • The thesis may establish a line of reasoning that structures the essay, but it needn't do so to earn the thesis point. • A thesis that meets the criteria can be awarded the point whether or not the rest of the response successfully supports that line of reasoning.

0 PTS. (0)	For any of the following: • There is no defensible thesis. • The intended thesis only restates the prompt. • The intended thesis provides a summary of the issue with no apparent or coherent claim. • There is a thesis, but it does not respond to the prompt. Responses that do not earn this point: • Only restate the prompt. • Do not take a position, or the position is vague or must be inferred. • Equivocate or summarize other's arguments but not the student's (e.g., some people say it's good, some people say it's bad). • State an obvious fact rather than making a claim that requires a defense.
1 PT. (1)	Responds to the prompt with a thesis that presents a defensible position. Responses that earn this point: • Responds to the prompt rather than restate or rephrase the prompt, and the thesis clearly takes a position rather than just stating that there are pros/cons.
2 PTS. (0)	n/a
3 PTS. (0)	n/a
4 PTS. (0)	n/a

EVID. & COMM.

0/4

Evidence and Commentary • Writing that suffers from grammatical and/or mechanical errors that interfere with communication cannot earn the fourth point in this row.

0 PTS. (0)	Simply restates thesis (if present), repeats provided information, or references fewer than two of the provided sources. Typical responses that earn 0 points: • Are incoherent or do not address the prompt. • May be just opinion with no textual references or references that are irrelevant.
1 PT. (1)	EVIDENCE: Provides evidence from or references at least two of the provided sources. AND COMMENTARY: Summarizes the evidence but does not explain how the evidence supports the student's argument. Typical responses that earn 1 point: • Tend to focus on summary or description of sources rather than specific details.
2 PTS. (2)	EVIDENCE: Provides evidence from or references at least three of the provided sources. AND COMMENTARY: Explains how some of the evidence relates to the student's argument, but no line of reasoning is established, or the line of

	reasoning is faulty. Typical responses that earn 2 points: • Consist of a mix of specific evidence and broad generalities. • May contain some simplistic, inaccurate, or repetitive explanations that don't strengthen the argument. • May make one point well but either do not make multiple supporting claims or do not adequately support more than one claim. • Do not explain the connections or progression between the student's claims, so a line of reasoning is not clearly established.
3 PTS. (3)	EVIDENCE: Provides specific evidence from at least three of the provided sources to support all claims in a line of reasoning. AND COMMENTARY: Explains how some of the evidence supports a line of reasoning. Typical responses that earn 3 points: • Uniformly offer evidence to support claims. • Focus on the importance of specific words and details from the sources to build an argument. • Organize an argument as a line of reasoning composed of multiple supporting claims. • Commentary may fail to integrate some evidence or fail to support a key claim.
4 PTS. (4)	EVIDENCE: Provides specific evidence from at least three of the provided sources to support all claims in a line of reasoning. AND COMMENTARY: Consistently explains how the evidence supports a line of reasoning. Typical responses that earn 4 points: • Uniformly offer evidence to support claims. • Focus on the importance of specific words and details from the sources to build an argument. • Organize and support an argument as a line of reasoning composed of multiple supporting claims, each with adequate evidence that is clearly explained.

SOPHIST.

0/1

Sophistication • This point should be awarded only if the sophistication of thought or complex understanding is part of the student's argument, not merely a phrase or reference.

0 PTS. (0)	Does not meet the criteria for 1 point. Responses that do not earn this point: • Attempt to contextualize their argument, but such attempts consist predominantly of sweeping generalizations. • Only hint or suggest other arguments. • Use complicated or complex sentences or language that is ineffective because it does not enhance the student's argument.
1 PT. (1)	Demonstrates sophistication of thought and/or a complex understanding of the rhetorical situation. Responses that earn this point may demonstrate sophistication of thought and/or a complex understanding of the rhetorical situation by doing any of the following: 1. Crafting a nuanced argument by consistently identifying and exploring complexities or tensions across the sources. 2. Articulating the implications or limitations of an argument (either the student's argument or arguments conveyed in the sources) by situating it within a broader context. 3. Making effective rhetorical choices that consistently strengthen the force and impact of the student's argument. 4. Employing a style that is consistently vivid and persuasive.
2 PTS. (0)	n/a
3 PTS. (0)	n/a
4 PTS.	n/a